Model Integration with GIS, CIS and SCADA at the Greater Cincinnati Water Works

Cheryl Bush, Yeongho Lee, Todd Reutelshofer, David Hartman* (GCWW)
Jerry Edwards*, Deborah Flaig,
Brian Lendt (B&V)

* At GCWW or B&V during project
Overview / Agenda

- **Physical Facilities**
 - GIS: Integrate for maintenance
 - Facility Schematics
 - Pump Curves
 - Tank Geometry

- **Demand Data (Allocated AAD)**
 - CIS (Billing data): Integrate for maintenance
 - Non-revenue water

- **Operational Data**
 - SCADA: Integrate for operational evaluations
 - Valve status (open/closed) and settings
Greater Cincinnati Water Works (GCWW) System Profile

- GCWW provides about 136 million gallons a day through 3,000 miles of water main
- 235,000 residential and commercial accounts
- Serves over 1,000,000 people
- GIS contains 200,000 pipes as of Jan. 1, 2008
- One of the largest All-Pipes hydraulic model ever constructed
- Selected H2OMAP Software by MWHSoft to perform hydraulic modeling
Geographical Information System (GIS)

- Source of Distribution System Records
- ESRI Arc Map Geometric Network
- Mains, Valves, Fittings, Hydrants
- Pump Station and Storage Tank schematics only. Size and Capacity information in other records.
- Additions & Corrections during model construction need to be added to GIS
GIS Data

- Data contained in GIS Database
 - Installation Date
 - Rehabilitation Date (Clean & Line)
 - Abandonment Date
 - Size
 - Material Type
GIS Issues

- **Discretation**
 - Current GIS allows for complex edges
 - GCWW GIS created with much detail
 - Branches complex
 - Valves and Fire Hydrants break pipe lengths

- **Connectivity**
 - Critical
Establishing GIS Network Connectivity

- Evaluate network connectivity in GIS prior to model development
- Topology rules:
 - Fittings at endpoint of main
 - Hydrants at endpoint of main
 - Mains must not overlap
 - Mains must not self-overlap
 - Pumps at endpoint of main
 - Valves must be at endpoint of main
 - Water Storage units (reservoir/tank) must be at endpoint of main
- Over 300 topology errors existed
- Built “Geometric Network” in GIS to maintain connectivity
Network Connectivity/Topology

- No duplicate database records (duplicate features with identical IDs & attributes)
- No orphan nodes
- No duplicate nodes
- Pipes must not overlap other pipes
- Pipes must not self-overlap
- Pipes must not self-intersect
- Pipes must be split at intersections or (exceptions allowed)
- Pipe endpoints must be covered by nodes
“Points and Lines” GIS vs. Hydraulic Model

<table>
<thead>
<tr>
<th>GIS Database</th>
<th>Features</th>
<th>Feature Type</th>
<th>Hydraulic Model (H2OMAP)</th>
<th>Features</th>
<th>Feature Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Feature Type</td>
<td></td>
<td></td>
<td>Features</td>
<td>Feature Type</td>
</tr>
<tr>
<td>Tanks/Reservoirs</td>
<td>Point</td>
<td></td>
<td>Tanks/Reservoirs</td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td>Fittings, hydrants,</td>
<td>Point</td>
<td></td>
<td>Junctions</td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td>non-operational valves</td>
<td></td>
<td></td>
<td>Valves</td>
<td>Line</td>
<td></td>
</tr>
<tr>
<td>Operational Valves</td>
<td>Point</td>
<td></td>
<td>Pumps</td>
<td>Line</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>Point</td>
<td></td>
<td>Pipe</td>
<td>Line</td>
<td></td>
</tr>
<tr>
<td>Pipes</td>
<td>Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relating GIS with Hydraulic Model in H2OMAP

- Asset ID’s are the key for 1:1 relationship with GIS
- Representing Pumps and Valves in H2OMAP
Constructing the Model in H2OMAP

- Exported pipes from GIS to H2OMAP software
- Exported facility data (pump stations, control valves, tank facilities) to H2OMAP
- Hydraulic Model QC
 - Orphaned nodes & pipes
 - Nodes in close proximity
 - Parallel pipes
 - Diameter discrepancy
 - Network trace
Facility Model Development

- Developed from GIS data
- Schematic drawings used to verify facility network
- SCADA data used to refine operational information
- Provided documentation of additions, subtractions, and/or modification of facility elements to client
GIS & Model Issues

- To include hydrants or not
 - No. of hydrant segments = 62,000 pipes *
 - No. of pipe segments = 200,000 *

- Model Performance vs. One-to-One
 - Model Execution Time vs Maintenance
 - Trim “spurs”
 - Combine small pipe segments with others
 - Auto skeletonization

(* GIS status as of Jan 2008)
GIS & Model Issues

- GIS IDs generally not descriptive
- MODEL IDs need to be descriptive enough to help calibration of model

WARNING: Negative pressures at demand node(s) at 7:00:00 hrs.
WARNING: FCV 6519.1 open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009221A open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009417 open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009867B open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009858A open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009965 open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009974E open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009948A open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV EQ009948A open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV UNKVF1 open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV UNKVF2 open but cannot deliver flow at 7:00:00 hrs.
WARNING: FCV UNKVF3 open but cannot deliver flow at 7:00:00 hrs.
WARNING: Pump EQ000015 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ000022 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ001017 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ009436 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ009439 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ009440 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump EQ009443 closed due to its inability to deliver head at 7:00:00 hrs.
WARNING: Pump EQ009444 closed due to its inability to deliver head at 7:00:00 hrs.
WARNING: Pump UNKPU8 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: Pump UNKPU9 open but exceeds maximum flow at 7:00:00 hrs.
WARNING: System unbalanced at 7:00:00 hrs. EXECUTION HALTED.

** Error: hydraulic simulation failed **
Customer Information System (CIS)

- Billing System Characteristics
 - Premise Code for one property
 - Each meter has one service
 - Multiple Services may be linked to one Premise
 - Numerous usage type codes (single-family residential, commercial, school, etc.)

- Allocation of Sales from CIS
 - Multiple CIS usage types combined into two consolidated usage types (residential, ICI)
 - Consumption summed for each Premise by usage type
Demand Allocation

 Allocation of year 2007 annual average day use
 – Domestic use from CIS:
 • residential and ICI metered usage
 – Wholesale customers:
 • metered but special handling required
 – Unmetered water:
 • apparent losses, real losses, unmetered uses

 Various demand conditions created using demand manager and peaking factors
Linking Metered Sales to Model

- CIS contains premise number for all accounts
- Premises are mapped in GIS
- Tap location in GIS allows for accurate allocation
- Use spatial link in GIS
Consumption from these four premises was summarized by Branch Number and assigned to Branch 260546. Total consumption = 0.000985 mgd.
Demand Issues

- Unmapped Premises and Branches caused minor losses in demand allocation
- Domestic Water Demands only
- Monthly vs Quarterly Readings
 - Annualized data only
- Must include Water Loss in demand calculation to match actual AAD water use in system (consumption)
SCADA

- Source of operation data with 10 year storage
- Flow, Pressure, Pump Status, Valve Opening, Storage Water Level, Water Quality Monitor Values
- Desire ability to import operational conditions to calibrate or to balance model to specific conditions
SCADA System

- Each signal has specific SCADA Tag ID
 - SCADA Identifier is descriptive on Tag function
 - SCADA Identifier is longer than model ID allows
 - GIS Identifier vs SCADA Identifier

- Multiple signals for single equipment
 - Pump: on time, off time, speed
 - Valve: open status, close status, transition or percentage
 - Flow meter
SCADA Link

- Add field in Model for SCADA Tag ID
- Maintain Cross Index Table of IDs Among GIS, Model and SCADA (spreadsheet application)
- Operation data from SCADA imported into spreadsheet application with Model IDs for import to model
 - Alternative suggestion: Consider using this spreadsheet to help provide more descriptive ID names at key facilities for error messages.
Model Maintenance

- How are changes made in GIS
 - Abandon original pipe, valve, hydrant, etc
 - Install new pipe, valve, hydrant
- Demands
 - Infrastructure replaced
 - New infrastructure
- Upgrade to GIS, CIS, or SCADA Systems can affect integration
- Platform of Modeling Software
 - GIS, CAD or stand alone
 - Manual vs Automatic process
Maintenance Issues

- How often?
- Recalibrate?
- Effort required vs. improved accuracies
Model Update Steps

- **Update piping network: GIS and Hydraulic Model tools**
 - Flag in GIS all pipes not used in previous model construction(s)
 - Flag in GIS all abandoned mains
 - Assignment and/or modification of C-values

- **Update facilities**
 - New or modified facilities
 - Update pump performance tests
 - Changes to control valve settings

- **Update AAD allocation**
Summary

- Integration allows for more accurate model
 - Pipe Network, Demands
- Integration allows for future flexibility
 - Operational Conditions
 - Maintenance
- Integration requires balancing of needs
Contact Information

Greater Cincinnati Water Works
Cheri Bush, P.E. cheri.bush@gcww.cincinnati-oh.gov
Yeongho Lee, P.E. PhD. yeongho.lee@gcww.cincinnati-oh.gov
Todd Reutelshofer todd.reutelshofer@gcww.cincinnati-oh.gov
David Hartman (formerly at GCWW)

Black and Veatch
Jerry Edwards, P.E. (formerly at B&V)
Brian Lendt
Deborah Flaig